direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C4.10C42, C24.6Q8, (C2×C4).88C42, C4.41(C2×C42), (C22×C8).17C4, C23.49(C2×Q8), (C22×C4).34Q8, C23.58(C4⋊C4), (C22×C4).253D4, C4○(C4.10C42), (C2×M4(2)).24C4, (C23×C4).216C22, (C22×C4).645C23, (C22×M4(2)).9C2, C4.14(C2.C42), (C2×M4(2)).294C22, C22.27(C2.C42), (C2×C8).8(C2×C4), C22.7(C2×C4⋊C4), (C2×C4).225(C2×D4), C4.79(C2×C22⋊C4), (C2×C4).120(C4⋊C4), (C2×C4).515(C22×C4), (C22×C4).478(C2×C4), C2.8(C2×C2.C42), (C2×C4).112(C22⋊C4), SmallGroup(128,463)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4.10C42
G = < a,b,c,d | a2=b4=1, c4=d4=b2, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >
Subgroups: 276 in 186 conjugacy classes, 108 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C4.10C42, C22×M4(2), C2×C4.10C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4.10C42, C2×C2.C42, C2×C4.10C42
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 15 5 11)(2 16 6 12)(3 9 7 13)(4 10 8 14)(17 31 21 27)(18 32 22 28)(19 25 23 29)(20 26 24 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 29 7 31 5 25 3 27)(2 24 4 22 6 20 8 18)(9 17 15 19 13 21 11 23)(10 28 12 26 14 32 16 30)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29,7,31,5,25,3,27)(2,24,4,22,6,20,8,18)(9,17,15,19,13,21,11,23)(10,28,12,26,14,32,16,30)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29,7,31,5,25,3,27)(2,24,4,22,6,20,8,18)(9,17,15,19,13,21,11,23)(10,28,12,26,14,32,16,30) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,15,5,11),(2,16,6,12),(3,9,7,13),(4,10,8,14),(17,31,21,27),(18,32,22,28),(19,25,23,29),(20,26,24,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,29,7,31,5,25,3,27),(2,24,4,22,6,20,8,18),(9,17,15,19,13,21,11,23),(10,28,12,26,14,32,16,30)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 8A | ··· | 8X |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | - | - | |||
image | C1 | C2 | C2 | C4 | C4 | D4 | Q8 | Q8 | C4.10C42 |
kernel | C2×C4.10C42 | C4.10C42 | C22×M4(2) | C22×C8 | C2×M4(2) | C22×C4 | C22×C4 | C24 | C2 |
# reps | 1 | 4 | 3 | 12 | 12 | 6 | 1 | 1 | 4 |
Matrix representation of C2×C4.10C42 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
10 | 16 | 0 | 0 | 0 | 0 |
16 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[10,16,0,0,0,0,16,7,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,13,0] >;
C2×C4.10C42 in GAP, Magma, Sage, TeX
C_2\times C_4._{10}C_4^2
% in TeX
G:=Group("C2xC4.10C4^2");
// GroupNames label
G:=SmallGroup(128,463);
// by ID
G=gap.SmallGroup(128,463);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,248,1411,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=1,c^4=d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations